2019-05-22 14:26:00

Developments in Light-Controllable Multi-Digit Memory Materials

2019-05-22 14:26:00 | Share this post:

A research team led by Professors Jan-Chi Yang and Yi-Chun Chen of the National Cheng Kung University (NCKU) physics department has made a significant leap in the manipulation of next-generation memory materials.

Professor Yi-Chun Chen

Professor Yi-Chun Chen

 

Professor Jan-Chi Yang

Professor Jan-Chi Yang


With the support of the Ministry of Science and Technology, they have developed bismuth ferrite (BiFeO3), a multi-digit memory material which is capable of recording eight logic states (0-7) simultaneously in a single memory unit. Multi-digit memory devices permit information to be stored at densities that far exceed those of conventional 1-bit memory systems (which are characterized by two operating states: 0 and 1). The NCKU research team has developed a novel technology that allows for non-contact (i.e., optical) control over multiple memory states. The application of multi-digit materials in conjunction with light control technology can greatly reduce memory storage volume and energy consumption/dissipation levels compared to existing memory devices. The application of light controllable multi-digit memory to artificial intelligence systems and cloud computing is expected to reduce delays in data reading and boost computational efficiency.

This technology represents a revolutionary breakthrough that is sure to advance efforts to miniaturize multifunctional nano-devices in the near future. A report of this work was published on May 6th in the prestigious international peer-reviewed journal “Nature Materials”.

Breakthrough: Novel alternative for information technology

Smart technologies, the Internet of Things, cloud computing, artificial intelligence, and big data analytics are booming, and data storage is a key component of all of these systems. Ultra-high-performance computing platforms will require the development of reliable storage systems with (1) large-capacity, (2) high-speed access, and (3) energy-savings with a small form factor. Conventional memory systems employ two logic states: 0 and 1. Within this framework, memory density can only be increased by reducing the size of components; however, there are physical limitations to this process. Novel materials with multiple logic states and new access technologies will be key to the further development of information technology.

One research group in NCKU has made significant advances in the development of multi-digit memory materials to address the aforementioned memory bottleneck. The multiferroic material BiFeO3 achieves multi-digit memory operations based on the spontaneous electric dipole moment and electron spin arrangements. Team leader Chen described how the electrical, magnetic, and antiferromagnetic orders of BiFeO3 make it possible to record eight logic states in a single storage unit. Theoretically, it should be possible to scale down the size of the memory devices to the sub-nano scale without a loss of information. Memory devices based on multiferroic materials are far more stable than existing non-volatile memory devices, which are prone to data loss after power failure.

The most important breakthrough in this research is the development of light tunability in this type of multi-digit material. Conventional thought dictates that light (as an alternating electromagnetic wave) cannot be used to induce specific non-volatile changes in the configuration of memory devices. However, the proposed scheme employs light-induced local deformation, referred to as light-induced flexoelectric effects. Optically controllable memory devices do not require metal electrodes or complex fabrication, which satisfies the engineering ideal “the material is the device”. Light-controllable multi-digit memory represents a paradigm shift for memory development . This material can be directly integrated with advanced optical technologies, such as quantum storage and quantum communications.

The Ministry of Science and Technology (MOST) has consistently encouraged young scholars to pursue innovative ideas, to strive for breakthroughs, and to compete with the best minds in the world. Professor Shieh, Dar-Bin, the deputy minister of MOST, describes Professors Yang and Chen as highly talented young scholars. The outstanding achievements in this study are a demonstration of their ceaseless creativity and an excellent example of fundamental research being performed to de velop materials and tools which propel technological applications into the future. MOST will continue to support developments in fundamental science, and the ministry looks forward to further breakthroughs.

 

 

 

 

Date: 2019-05-22

Source: NCKU News Center

 

Share this post:

Related articles

革命性超穎介面光學:跨足基礎物理與應用科學的突破

2023-11-13 15:00:00

Research Highlights

近期,成大光電系的吳品頡副教授在瞬間高光譜影像與非厄米超穎介面系統的任意偏振態控制這兩個領域取得的長足的進展,兩項研究成果接續發表在國際頂級學術期刊Nature Communications。品頡表示,這兩個研究工作都是跨團隊的合作,...

Read More

成大QFORT致力發展台灣量子電腦關鍵技術平台

2021-06-17 11:03:00

Research Highlights

打造下一個世代護國神山產業 全世界各國政府及企業近年對量子電腦研發展現出高度重視,截至2020年全球投入研發量子運算的金額高達219億美元,科技部於去年2020年底宣布5年將投入80億台幣,要組量子電腦科研國家隊,期盼台灣在成功...

Read More

下世代超輕薄可捲曲晶片 張景皓團隊找出可撓式奈米科技關鍵

2022-07-19 11:40:00

Research Highlights

超輕薄,可捲曲,豐富應用性的晶片不再是夢想。國立成功大學物理系副教授兼成大前沿量子科技研究中心張景皓與其團隊,共同分析「石墨烯」材料,發現捲曲後有新的獨特應用功能性,為此與團隊投入研究,從無到有,建立起基礎物理(量子態)模型。研究成果...

Read More

成大 90 and beyond 計畫學者路克史密斯  研究成果登國際期刊 PRL

2022-03-15 11:57:00

Research Highlights

成大新進學人傳捷報!國立成功大學「NCKU 90 and Beyond」培育計畫助理研究教授路克.史密斯(Luke Smith)2021 年 11 月甫到成大即以第一作者發表文章,內容為藉由產生自旋軌道交互作用,進而達到全電性控制近藤...

Read More